Copied to
clipboard

G = C33:7(C2xC8)  order 432 = 24·33

2nd semidirect product of C33 and C2xC8 acting via C2xC8/C4=C4

metabelian, soluble, monomial, A-group

Aliases: C33:7(C2xC8), C33:4C8:10C2, C12.3(C32:C4), C3:Dic3.40D6, (C32xC12).5C4, C4.3(C33:C4), (C3xC12).13Dic3, C3:S3:4(C3:C8), (C3xC3:S3):7C8, C32:5(C2xC3:C8), (C4xC3:S3).9S3, C6.8(C2xC32:C4), (C6xC3:S3).12C4, C3:2(C3:S3:3C8), (C12xC3:S3).14C2, (C2xC3:S3).7Dic3, C2.1(C2xC33:C4), (C32xC6).15(C2xC4), (C3xC6).22(C2xDic3), (C3xC3:Dic3).48C22, SmallGroup(432,635)

Series: Derived Chief Lower central Upper central

C1C33 — C33:7(C2xC8)
C1C3C33C32xC6C3xC3:Dic3C33:4C8 — C33:7(C2xC8)
C33 — C33:7(C2xC8)
C1C4

Generators and relations for C33:7(C2xC8)
 G = < a,b,c,d,e | a3=b3=c3=d2=e8=1, ab=ba, ac=ca, dad=a-1, eae-1=ab-1, bc=cb, dbd=b-1, ebe-1=a-1b-1, cd=dc, ece-1=c-1, de=ed >

Subgroups: 424 in 88 conjugacy classes, 25 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2xC4, C32, C32, Dic3, C12, C12, D6, C2xC6, C2xC8, C3xS3, C3:S3, C3xC6, C3xC6, C3:C8, C4xS3, C2xC12, C33, C3xDic3, C3:Dic3, C3xC12, C3xC12, S3xC6, C2xC3:S3, C2xC3:C8, C3xC3:S3, C32xC6, C32:2C8, S3xC12, C4xC3:S3, C3xC3:Dic3, C32xC12, C6xC3:S3, C3:S3:3C8, C33:4C8, C12xC3:S3, C33:7(C2xC8)
Quotients: C1, C2, C4, C22, S3, C8, C2xC4, Dic3, D6, C2xC8, C3:C8, C2xDic3, C32:C4, C2xC3:C8, C2xC32:C4, C33:C4, C3:S3:3C8, C2xC33:C4, C33:7(C2xC8)

Smallest permutation representation of C33:7(C2xC8)
On 48 points
Generators in S48
(1 13 47)(2 14 48)(3 41 15)(4 42 16)(5 9 43)(6 10 44)(7 45 11)(8 46 12)(17 27 40)(18 33 28)(19 34 29)(20 30 35)(21 31 36)(22 37 32)(23 38 25)(24 26 39)
(2 48 14)(4 16 42)(6 44 10)(8 12 46)(17 40 27)(19 29 34)(21 36 31)(23 25 38)
(1 47 13)(2 14 48)(3 41 15)(4 16 42)(5 43 9)(6 10 44)(7 45 11)(8 12 46)(17 40 27)(18 28 33)(19 34 29)(20 30 35)(21 36 31)(22 32 37)(23 38 25)(24 26 39)
(1 30)(2 31)(3 32)(4 25)(5 26)(6 27)(7 28)(8 29)(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)(33 45)(34 46)(35 47)(36 48)(37 41)(38 42)(39 43)(40 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,13,47)(2,14,48)(3,41,15)(4,42,16)(5,9,43)(6,10,44)(7,45,11)(8,46,12)(17,27,40)(18,33,28)(19,34,29)(20,30,35)(21,31,36)(22,37,32)(23,38,25)(24,26,39), (2,48,14)(4,16,42)(6,44,10)(8,12,46)(17,40,27)(19,29,34)(21,36,31)(23,25,38), (1,47,13)(2,14,48)(3,41,15)(4,16,42)(5,43,9)(6,10,44)(7,45,11)(8,12,46)(17,40,27)(18,28,33)(19,34,29)(20,30,35)(21,36,31)(22,32,37)(23,38,25)(24,26,39), (1,30)(2,31)(3,32)(4,25)(5,26)(6,27)(7,28)(8,29)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;

G:=Group( (1,13,47)(2,14,48)(3,41,15)(4,42,16)(5,9,43)(6,10,44)(7,45,11)(8,46,12)(17,27,40)(18,33,28)(19,34,29)(20,30,35)(21,31,36)(22,37,32)(23,38,25)(24,26,39), (2,48,14)(4,16,42)(6,44,10)(8,12,46)(17,40,27)(19,29,34)(21,36,31)(23,25,38), (1,47,13)(2,14,48)(3,41,15)(4,16,42)(5,43,9)(6,10,44)(7,45,11)(8,12,46)(17,40,27)(18,28,33)(19,34,29)(20,30,35)(21,36,31)(22,32,37)(23,38,25)(24,26,39), (1,30)(2,31)(3,32)(4,25)(5,26)(6,27)(7,28)(8,29)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,13,47),(2,14,48),(3,41,15),(4,42,16),(5,9,43),(6,10,44),(7,45,11),(8,46,12),(17,27,40),(18,33,28),(19,34,29),(20,30,35),(21,31,36),(22,37,32),(23,38,25),(24,26,39)], [(2,48,14),(4,16,42),(6,44,10),(8,12,46),(17,40,27),(19,29,34),(21,36,31),(23,25,38)], [(1,47,13),(2,14,48),(3,41,15),(4,16,42),(5,43,9),(6,10,44),(7,45,11),(8,12,46),(17,40,27),(18,28,33),(19,34,29),(20,30,35),(21,36,31),(22,32,37),(23,38,25),(24,26,39)], [(1,30),(2,31),(3,32),(4,25),(5,26),(6,27),(7,28),(8,29),(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23),(33,45),(34,46),(35,47),(36,48),(37,41),(38,42),(39,43),(40,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])

48 conjugacy classes

class 1 2A2B2C3A3B···3G4A4B4C4D6A6B···6G6H6I8A···8H12A12B12C···12N12O12P
order122233···3444466···6668···8121212···121212
size119924···4119924···4181827···27224···41818

48 irreducible representations

dim11111122222444444
type+++++--++
imageC1C2C2C4C4C8S3D6Dic3Dic3C3:C8C32:C4C2xC32:C4C33:C4C3:S3:3C8C2xC33:C4C33:7(C2xC8)
kernelC33:7(C2xC8)C33:4C8C12xC3:S3C32xC12C6xC3:S3C3xC3:S3C4xC3:S3C3:Dic3C3xC12C2xC3:S3C3:S3C12C6C4C3C2C1
# reps12122811114224448

Matrix representation of C33:7(C2xC8) in GL6(F73)

100000
010000
00640540
0008019
000080
0000064
,
100000
010000
00106748
0001648
0000640
000008
,
0720000
1720000
00801919
00085419
0000640
0000064
,
100000
010000
0001450
0010028
000001
000010
,
0100000
1000000
0067675151
006765151
00063676
0063066

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,0,0,0,0,0,0,8,0,0,0,0,54,0,8,0,0,0,0,19,0,64],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,67,6,64,0,0,0,48,48,0,8],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,19,54,64,0,0,0,19,19,0,64],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,45,0,0,1,0,0,0,28,1,0],[0,10,0,0,0,0,10,0,0,0,0,0,0,0,67,67,0,63,0,0,67,6,63,0,0,0,51,51,67,6,0,0,51,51,6,6] >;

C33:7(C2xC8) in GAP, Magma, Sage, TeX

C_3^3\rtimes_7(C_2\times C_8)
% in TeX

G:=Group("C3^3:7(C2xC8)");
// GroupNames label

G:=SmallGroup(432,635);
// by ID

G=gap.SmallGroup(432,635);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,64,58,2804,298,2693,1027,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^2=e^8=1,a*b=b*a,a*c=c*a,d*a*d=a^-1,e*a*e^-1=a*b^-1,b*c=c*b,d*b*d=b^-1,e*b*e^-1=a^-1*b^-1,c*d=d*c,e*c*e^-1=c^-1,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<